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The Direct Method
NMDR in an AB System

O. HARTMANN and B. GESTBLOM

Institute of Physics, University of Uppsala, Box 530, S-751 21 Uppsala, Sweden

A superoperator formalism is used to calculate the theoretical
nuclear magnetic double resonance spectra for an AB spin system.
Transition frequencies and intensities are derived for the cases of
tickling, spin decoupling and perturbation of the double quantum
transition.

1. INTRODUCTION

uclear magnetic resonance spectra are normally calculated from a spin
N Hamiltonian H. The eigenvalues of H give the energy levels of the system,
and the transition frequencies are found from the differences between these
energy levels.

Another method of finding transition frequencies has been described by
Banwell and Primas.! In this so called direct method the transition frequencies
are found directly as the eigenvalues of a derivation superoperator A°
generated by the normal Hamilton operator. When A° operates on a spin
operator X the commutator of H and X is formed

A°X =[H, X]=HX - XH (1)

If the dimension of H is m x n, the dimension of the A° matrix is n2 x n2, The
solution of the eigenvalue problem in this formalism involves the construction
of 7n2 linearly independent basis operators, and the evaluation of the com-
mutators between the basis operators and H. The superoperator matrix is
then diagonalized. The advantage of this method is that no energy levels need
to be constructed and the observable quantities, i.e. the transition frequencies,
are directly given by the eigenvalues of the matrix.

The derivation superoperator matrix can be constructed without explicit
use of eqn. (1). In this “basis function representation’’® the superoperator
matrix elements are found directly from the Hamiltonian matrix elements
as 2,3

Aojklm = 5kajx - 5lekm (2)
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1818 HARTMANN AND GESTBLOM

where jk--- are the basis functions of H. The basis operators R, of the A°
matrix need not be known in explicit form when this representation is used.
Eqn. (2) ensures that they will be “shift operators” with the property of
changing one basis function k of H into another j.

The “direct method” has been used to calculate single and multiple
quantum spectra of a few multispin systems.},3™% The ““direct method” is also
applicable to double resonance spectra if a transformation to the rotating frame
is made. NMDR in an AX spin system has been studied in a basis operator
formalism.8,”

In this paper the ‘“direct method” is applied to NMDR in an AB system.
The “basis function representation’ will be used here as it offers the simpler
way of calculating the superoperator matrix elements.

2. THE AB SYSTEM

The double resonance Hamiltonian of an AB system in the rotating frame
is given by (in frequency units)
7Hy
2n

where », is the frequency of the irradiating rf field H,, », and », are the
Larmor frequencies of nuclei A and B, J the spin-spin coupling between the
nuclei, and y their gyromagnetic ratio.

It is well known that the single resonance Hamiltonian H° of an AB system
is diagonalized by choosing the basis functions

y1= BB

V=—y—v) >~ (vg =) g2+ J1, - Iy~ (Ly3*+15%) (3)

ypy = Pocos @ + afsinf

4
g = — Pasin § + «fcos b Py = o “)
Table 1. Matrix elements of the rotating frame Hamiltonian V for the AB system.
Basis function W, Y Y3 Y,
¥, (va + v8)/2 — Y(cos B ~Y(cos) B 0
—v, +J/4 + sin 6) —sin 6)
va - %’(cos ] C-J/4 0 — 3 (cosd
+ sin 6) + sin 6)
Vs —‘—’(cosG 0 -C-J/4 —-%’(0030
— 8in 6) — 8in 0)
Y 0 - Y(cosG ~Z(cos B —(vy + vg)/2
+ sin 6) — sin 6) + vy +J/4

yH
v=73— tan 20 = J[(vy—vp)
C= §{(vy — vp)? + J2J %
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where tan 20 =J/(v, —vg). The matrix elements of the rotating frame Hamil-
tonian V in this set of basis functions is given in Table 1. In analogy with
eqn. (2) we can calculate the derivation superoperator A, corresponding to
the rotating frame Hamiltonian V from

Ajklm = ‘5km v
This matrix is given in Table 2.
The basis operators of Table 2 are eigenoperators to the derivation super-
operator Az, which is generated by the spin operator Iz, with eigenvalues
u=0, £1, +2. The matrix has been arranged according to these u values.

This matrix can in the general case not be diagonalized, but can be handled
in the practically important cases of spin tickling and spin decoupling.

17 5,‘1 Vkm (5)

i

2a. THE SINGLE RESONANCE SPECTRUM

The single resonance spectrum can be found from the derivation super-
operator matrix in a coordinate system rotating with the frequency », of the
observing rf field H,. This matrix is obtained if », and H, of eqn. (3) and Table
2 are replaced by v, and H;. For weak observing fields all off-diagonal elements
in the A matrix can be neglected. The transition frequencies are given by
the frequencies », at which the frequency-dependent diagonal elements become
equal to zero.2 The », frequencies which make the g = —1 elements A;,,,,
Aia1s Aggees, and Ayys, zero constitute the four single quantum transition
frequencies of the AB spectrum (transitions A2, B2, B1, and Al, respectively).

The intensity L of a transition corresponding to an eigenoperator X in the
rotating frame is given by?!

Lo | Tr { ;Iﬁx} 2 (6)

In application of eqn. (6) to the eigenoperators obtained from Table 2, it can
be noticed that only basis operators from the u = —1 block will contribute to
the intensities.?

In the AB single resonance case, the off-diagonal elements in Table 2 are
negligible and the eigenoperators are the same as the basis operators. Then

ijOCITr{(IA+ + IB+)Rjk}]2 (7)
Using the annihilating property 2 of the shift operators Ry, this is reduced to
ij‘x|<'l’j[IA+ + Iy P (8)

which is the same expression as obtained in the indirect method. The intensities
in the single resonance spectrum become

Ly =Ly, ¢ (cos 6 + sin 0)? 9)
L3 =L oc (cos @ — sinf)?

2b. IRRADIATION OF A SINGLE QUANTUM TRANSITION (TICKLING)

The perturbing rf field H, is now centered on one of the single quantum
transitions. The A matrix in the coordinate system rotating with frequency
v, is given by Table 2. The transition frequencies in the rotating frame will
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be given by the eigenvalues of the matrix, and the corresponding transition
frequencies in the laboratory frame are obtained by adding the frequency of
the irradiating field v, to these values. Intickling experiments the H, field is
assumed to perturb only one transition and the influence on other transitions
is neglected. Consider the case when the line Al (corresponding to shift operator
Rg,) is irradiated. This means that the element 4445, in Table 2 is set to zero,
i.e.v5=(v, +v,)/2—C—J/2. When this value of », is introduced into the other
frequency dependent matrix elements, two pairs of degenerate diagonal
elements will appear (/11414 = A 33 and /12323 = Ays54). The non-negligible off-
diagonal elements 4,5, and Ay, Will ensure complete mixing of the corre-
sponding basis operators, on diagonalization of the matrix. These 2 x 2 matrices
are diagonalized by the transformations

R'j3= (Ris + Ryy) [v/2 R'gs=(Ros + Ryg) [4/2 (10)
R'yy= (=R + Ry)[v2 R'ys= (—Rys + Ryy) [4/2
which gives the eigenvalues
A yyr= 20 + J — ‘é’ (cos — sin0) gy = 2C — 3 (c030 — sin 0)
(11)

A'yyq= 20+ J + 3 (c050 — 5in0) A'pey = 2C + 3 (c0s 6 — sin 0)

This means that the lines Bl and B2 are split into doublets with splittings
S = v (cos 6 — sin ).

When A2 is irradiated, the splittings in Bl and B2 turn out to be
v (cos 6 + sin 6). Corresponding expressions are obtained for the splittings of
the A lines when one of the B lines is irradiated.

Thus the results of a tickling experiment is obtained in this formalism by
selecting the proper », and considering the diagonal elements of the A4 matrix.
The off-diagonal elements connecting the doubly degenerate elements give the
magnitudes of the corresponding splittings. The difference between progressive
and regressive transitions ® also appears in the formalism. In the progressive
case a u = —1 transition is degenerate with a u = —2 transition but in the
regressive case it is degenerate with a transition in the x4 = 0 block.

In tickling experiments the amplitude of the H, field should be small
and only one transition be perturbed. The intensities of the unperturbed
transitions remain approximately unchanged. When Al is irradiated the
intensities in the B1 doublet will be given by

L'ygoc|Tr {(I,* + I;Y) R} 2=3Tr {(I,* + I;") (Rys + Ry} |2 (12)
L/ygoc|Tr {(IA+ + IB+) Ry} 2= §|Tr {(IA+ + IB+) (=Ry3 + Ryy) |2

Only the shift operators R,; and R,, belonging to the x4 = —1 block have
to be accounted for.

Thus
13°(|T1'{(I +I )R'13}|2=
=3Tr {(I,* 4+ I;") Ry3}[2 = } (cos 6 — sin 6)?

Acta Chem. Scand. 26 (1972) No. 5

(13)
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and L'jgoc|Tr {(IA+ +IB+)R’14}|2= 14
=3 Tr {(I,"+1I37) Ry3}|% = }(cos 6 — sin 6)2 (14)

In the same way
L'gg =L’} (cosf + sin 0)? (15)

This means that the lines B1 (corresponding to operator 24) and B2 (corre-
sponding to operator 13) are split into symmetrical doublets, when the
irradiating field is exactly centered on transition Al. This is the same result
as obtained from the indirect method.®

2¢. IRRADIATION OF THE DQ TRANSITION

If the rf field H, is centered on the double quantum transition, second-
order splittings can be shown to appear in the spectral lines.? 0 Irradiation of
the DQ transition corresponds to setting A4, (and A,,,)=0, i.e. v, = (v, +
v5)/2. When this value of », is introduced into the other frequency dependent
elements of the A matrix, it is seen that each of the four diagonal elements
in the u = —1 block will be degenerate with one diagonal element from the
1= +1block [e.g. Aig;p = Aygys = —C +J/2]. Contrary to the *tickling” case
there will be no first-order spiittings of the degenerate lines as there are no
off-diagonal elements between the u= —1 and u= +1 blocks. The basis
operators involved are, however, indirectly connected by non-zero off-diagonal
elements to the u = 0 block. The diagonalization of the matrix can be done
with a form of perturbation theory %12 which introduces a new non-zero non-
diagonal element between indirectly connected basis operators, as well as a

second-order correction to the diagonal elements. The new elements are given
by

i = Aigs + 3 D Aijmn Amoma ( 1 1 ) (16)
:tn;ﬁ( Aijijj - Amnmn Axia — Amnmn

From eqn. (16) and from Table 2 one finds that the new off-diagonal element

which connects the four pairs of degenerate diagonal elements will be the same

for all four pairs and given by

A=} f(v3/2) (cos 8 + sin )2 + (v?/2) (cos § — sin 0)2}
=2 ) —C+J)2 C+JJ2

The second order contributions to the diagonal elements are pairwise identical,

i.e. we get the same correctionin the 4 = +1 as in the y = —1 block. We can

therefore use the same transformation as in the preceding section to diagonalize
the 2 x 2 matrices and we find that the eigenvalues will be separated by

_1 YH3\? f(cos@ +sin6)®  (cosf — sinf)?
S (2n) —0+J2 Y CTI (18)
This expression then gives the splitting of the four single quantum transitions

on irradiation of the double quantum transition. This is in agreement with
the results from the indirect method.1®

(17)
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NUCLEAR MAGNETIC DOUBLE RESONANCE 1823

In evaluation of the intensities, the first-order eigenoperators should be
used. The perturbation expansion introduces the following corrections to the
zeroth order operators.

Ry, = Ry, + %R

#ij

Aijkl
. Aijij — Ay (19)
The first-order corrections to the eigenoperators will, however, not contribute
to the intensity since only operators from the 4 = 0 or u = + 2 blocks are added
in the perturbation expansion.

The 2 x 2 diagonalizations lead to complete mixing of the pairwise degenerate
operator states from the u = —1 and u = +1 blocks analogous to eqn. (10).
As the u = +1 basis operators not contribute to the intensities we find that
the intensities of the two lines in the doublets will be pairwise equal, we get
symmetrical doublets.

3a. THE AX CASE. SELECTIVE DECOUPLING

NMDR in an AX system has been studied in the “direct method”’®,” with
a superoperator matrix obtained from explicit basis operators using the
commutator relationship of eqn. (1). The solution is simpler, however, when
carried out in the ‘‘basis function’ formalism.

In the AX limit, the AB superoperator matrix of Table 2 can be simplified.
When v, — v, > J one obtains

sinf =0 cosf =1
C=%(‘I’A—1’B)

We rename nucleus B and call it X, and consider the case when the irradiating
H, field is applied somewhere in the region of the vy frequency. Then the off-
diagonal elements can be neglected when the difference between corresponding
diagonal elements are of the order »,—v,.

When these simplifications are carried out, the resulting 4 matrix for the
AX gystem can be made blockwise diagonal by a rearrangement of the basis
operators. The resulting four 4 x 4 submatrices are given in Table 3. Although
the matrices are of high order, the eigenvalue problem can be solved in
analytical form.

The A submatrix has the eigenvalues

Aa=vy —vp 2 H{{0p — o + J[20 + VP2 + [0, — 9, — J[2)* + VO]H/2}
Aga =7y — vy £ 3{[(vg — vp + J[2) + V2 = [(0, — vy — J[2)* + VP]1/2}
The transition frequencies in the laboratory system are found by adding »,
to these A values. The transitions are symmetric around », and represent the

A part of the spectrum when the X resonance is irradiated.
The eigenvalues of the B matrix are found to be

Asg=0and A;4= + [(v, — vy + J[2)% + V212 (21)

The C matrix is equal to the B matrix if —J/2 replaces J/2 and gives the
eigenvalues

(20)

Aojo=0and Ay 1 = £ [(v, — vy — J[2)% + VE]II2 (22)
Acta Chem. Scand. 26 (1972) No. 5



1824 HARTMANN AND GESTBLOM

Table 3. The A matrix for the AX system.

Submatrix A Submatrix B
Basis Basis
oper- R“ Ry; Rz( Ry oper- Ris R Ry, Ra
ator ator
Ry, va + ¥x -3 y 0 Ry, vy — ¥, -3 v 0
Zo, 2 2 FJ2 2 2
Ry, A 0 ¥ Ry, -y 0 0 4
2 £72 2 2 2
R,, 4 0 Vo= | — Ry, 4 0 0 -3
? —J2 2 2 2
Ry, 0 y -3 VYA — Vx Ry 0 ¥ -7 vy — Vx
2 2 2 2 2ap2
Submatrix C Submatrix D
Basis Basis
oper- Rq, Ry R, Ry oper- Ry Ry, R Ry
ator ator
Ry |vx—v| —3 s 0 R, | 2v— A -z 0
X 2 2 | 2 2
Ry, -3 0 0 3 Rg, 4 vy—va| O -3
—J/2
R,, 4 0 0 4 R, -7 0 Vo= s | »
2 2 2 2 172 2
Ry, 0 s -7 Vy— vy Ry, 0 -3 4 Yx — VA
2 2 +J)2 2 2 |

The transition frequencies in eqns. (21) — (22) are symmetric around the origin
(¢.e. the », frequency in the laboratory system) and represent the irradiated X
part of the spectrum. ;

The D matrix finally is the negative of A and gives transition frequencies
that are the negatives of those in eqn. (20), centered around v, —v, (2v,—», in
the laboratory system).

The intensities of the transitions can be found from eqn. (6). The eigen-
operators of the A matrix will contain different amounts of the basis operators
after the diagonalization. Only the basis operators from the u= —1 block
contribute to the intensities.

Acta Chem. Scand. 26 (1972) No. 5
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The intensity of a transition in the A matrix is given by
L =la;3 + ay (23)
where a5 and a,, are the amounts of the basis operators R,; and R,, contained
in the corresponding eigenoperator R
R =a, R4 + a;3R15 + a5,Rpq + 853R05 (24)

The a; coefficients are found from the diagonalization of the A matrix
and it is found that the intensities of the 1, 4, transitions can be expressed as

0t — 6 t g
L, ; o sin? 3 L4 o cos? (25)
where the angles 67 and 6~ are defined as
cosf* = vx Ve £ J/2 (26)

B [(vy — vy + J[2)% 4 V2]1/2

In the B matrix the intensities are given by L = |b;,|> where b, gives
the coefficient of the R,, operator in the eigenoperators. This gives for the
A, transitions the intensities

o Oa =7+ J[2R VY2 % (=g + T[2) [ = 9+ JJ2P + V2
2w, — v, + J[2)2 + 2v2

It is convenient to make a transformation of the B matrix to determine the

intensity of the A = 0 transitions. A rotation of the basis operators Ry, and R,

through the angle z/4 will leave one row with only zero elements which is
factored out of the matrix. The intensity of the A = 0 transitions is found to be

Los (27)

ve
(v, — vy + J[2)% + v?
The C matrix is identical with the B matrix on a substitution J/2— — J/2
and the intensities are

o Px= 72— I[2P+ V2 £ (g =¥y — J[2) (05 — vy — J[2)? + V12

Lyso (28)

L11,12 2(vx — vy — J/2)2 + 2V2 (29)

d L v 30
an 010 T (o — vy — J[2) + V2 (39)
No basis operators from the u = —1 block are contained in the D matrix, and

the four D matrix transitions have zero intensities.

3b. INTERPRETATION OF AX FREQUENCIES AND INTENSITIES

In eqns. (20) and (25) we have from the ““A” matrix obtained expressions
for transitions and intensities in the A part of the spectrum when nucleus X
is irradiated. These agree with those obtained by the indirect method.®®

Eqns. (21), (22), (27), and (29) describe the irradiated X part ot the
spectrum. These equations have the same form as if we regard the two single

Acta Chem. Scand. 26 (1972) No. 5
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resonance transitions X1 and X2 as two single spins 1, an interpretation
already discussed in Ref. 7.

According to the analogy with “single spin 1" we could expect one of the
peaks in eqns. (27) and (29) to be inverted. This negative intensity cannot be
accounted for in the present formalism, nor in the indirect method without
recourse to a full density matrix treatment. The D matrix transition frequencies
are the mirror image of those from the A matrix but have zero intensity. This
is a direct consequence of the AX approximation.

The transitions 4 = 0 are the resonances due to the H, field itself. Eqns.
(26) and (28) represent the effect of the finite amplitude of the H, field at the
two X line positions. This results in absorption of quanta from the H, field at
the », frequency.

4. CONCLUSIONS

Although the ‘““direct’’ method may appear complicated, the use of ‘‘the
basis function representation’” makes it as easy to handle as the normal
“indirect”’ method. It is seen that various types of double resonance spectra
in AB spin systems can be derived in the superoperator formalism. The direct
method even has a few advantages over the indirect method. The derivation
superoperator gives us in a natural way the appearance of the complete NMDR
spectrum including the irradiated nuclei and as an additional feature gives
the resonance due to the H, field itself.
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